lunedì 28 marzo 2016

Un asteroide impatta (di nuovo) su GIove

Giove ha da poco passato l'opposizione e si trova quindi nel periodo migliore dell'anno per essere osservato. Grazie alla numerosa schiera di appassionati di astronomia e di fotografia planetaria, il gigante gassoso è continuamente monitorato con un'ottima risoluzione e può quindi regalare sorprese inaspettate.

L'impatto scoperto dall'austriaco Kernbauer
Lo scorso 17 Marzo, alle ore 00:17 UT (Tempo Universale) è arrivato il momento di una di quelle sorprese che ogni appassionato spera di ricevere e che di certo ci fanno ben comprendere come l'Universo non sia affatto un luogo statico e pacifico come potremmo erroneamente pensare.
Almeno due osservatori indipendenti hanno registrato un breve flash proveniente dal bordo del pianeta gassoso, che ha raggiunto una luminosità superiore a quella dei satelliti medicei. L'evento è stato scoperto per primo dall'astronomo dilettante austriaco Kernbauer e poi confermato da
John McKeon, a nord di Dublino.
Con molta probabilità il flash, della durata dell'ordine di un secondo, è associabile all'impatto di un piccolo asteroide o di una cometa con l'atmosfera del gigante gassoso.
L'impatto confermato da John McKeon

Non sono ancora disponibili stime delle dimensioni del corpo celeste che ha deciso di soccombere all'enorme forza di gravità di Giove e nemmeno una stima precisa della posizione, anche a causa del fatto che l'evento si è verificato proprio nei pressi del bordo, laddove la determinazione esatta della posizione presenta grossi problemi, all'altezza della banda equatoriale nord. L'impatto è comunque reale perché è stato registrato dalle camere planetarie che molti astronomi dilettanti utilizzano per catturare splendide immagini in alta risoluzione dei pianeti, quindi su un supporto di certo ben più oggettivo dell'occhio umano. I due video che mostrano il flash sono stati pubblicati su YouTube e sono visualizzabili qui e qui.

Osservando a occhio i filmati disponibili è ragionevole stimare che il corpo impattante potrebbe avere avuto un diametro massimo di qualche decina di metri, probabilmente non troppo dissimile dal meteorite di 17 metri di diametro che nel Febbraio del 2013 solcò i cieli della Siberia, portandosi dietro una lunga scia di danni causati dalle onde d'urto generate dall'impatto con gli strati atmosferici più densi, a circa 30-50 km di altezza. Si tratta tuttavia di una rozza stima, perché l'evento potrebbe essere avvenuto nella porzione di Giove non visibile dalla Terra in quel momento. Se questa ipotesi si rivelasse vera, l'energia liberata potrebbe essere stata maggiore, quindi l'asteroide (o la cometa) aumentare di dimensioni.
Sarà interessante notare l'eventuale presenza di cicatrici nell'atmosfera di Giove, che potrebbero presentarsi come delle zone molto scure, quasi come l'ombra lasciata dal passaggio di un satellite mediceo, ma dalla forma più irregolare. Queste cicatrici sono lasciate dagli impatti più violenti che hanno un'alta penetrazione nell'atmosfera gioviana, al punto da bloccare in modo temporaneo i possenti moti convettivi che mantengono sempre in movimento i gas atmosferici. Se il corpo celeste era più grande di 10-20 metri potrebbe aver lasciato una traccia visibile anche con telescopi di piccolo diametro (10 cm).

Assistere in diretta all'impatto di un asteroide, o una piccola cometa, con un corpo celeste che si trova a una distanza che non ha bisogno di scomodare l'anno luce per essere espressa, e che orbita attorno alla nostra stessa stella, rappresenta di certo una forte emozione ma anche un piccolo campanello d'allarme perché ci rende partecipi in prima persona, e quasi in diretta, di quanto sia affollato il Sistema Solare, quindi potenzialmente pericoloso.


Una zona più affollata del previsto
L'impatto registrato lo scorso 17 Marzo non è infatti che l'ultimo di una lunga serie.
L'evento più spettacolare e violento è avvenuto nell'estate del 1994 con una ventina di frammenti della cometa Showmaker-Levy 9 che hanno lasciato profondi e duraturi segni nell'atmosfera di Giove, grandi fino al diametro del nostro pianeta. Fu la prima volta che l'essere umano osservava un oggetto schiantarsi contro un pianeta.

Tutti gli altri impatti registrati risalgono agli ultimi 7 anni e sono opera di astronomi dilettanti.
Il 19 Luglio 2009 l'australiano Anthony Wasley ha scoperto per primo le cicatrici lasciate da un probabile impatto asteroidale, simili a quelle prodotte dai frammenti cometari del 1994. Nessuno, però, aveva assisito in diretta all'evento vero e proprio, che si è stimato essere stato prodotto da un asteroide compreso tra 200 e 500 metri di diametro.
Il 3 Giugno 2010 il famoso imager planetario Christopher Go ha registrato per la prima volta il flash prodotto dall'ingresso nell'atmosfera Gioviana di un asteroide o una cometa dal diametro di una decina di metri.
Il 20 Agosto dello stesso anno sempre Go, con la conferma di altri osservatori, registrò un altro flash associabile a un nuovo impatto.
Il 10 Settembre 2012 un altro flash associato a un impatto è stato avvistato questa volta visualmente dall'astronomo dilettante Dan Petersen e poi confermato da una ripresa di George Hall. Erano quindi quattro anni e mezzo che non si osservavano più eventi di questo tipo, che ora molti planetologi ritengono più frequenti di quanto si pensasse prima del prezioso aiuto arrivato dalla comunità amatoriale nel corso degli ultimi 10 anni.
Capire quanto sia affollato il Sistema Solare e il ruolo che ha Giove nel proteggerci attirando su di sé molte comete e asteroidi sono attività fondamentali per ogni abitante della Terra che spera che la sua e le altre specie possano sopravvivere ancora per molto tempo.

Come si è formato il Sistema Solare?



Rispondere in modo esauriente a questa domanda non è affatto facile perché non possiamo invertire il tempo e osservare i pianeti come erano miliardi di anni fa. Dobbiamo quindi trasformarci in scrupolosi storici e cercare di ricostruire le vicende del nostro vicinato cosmico analizzando i pochi indizi di cui disponiamo, senza dimenticare di sfruttare a nostro favore l’enorme vastità dell’Universo.
Un aiuto molto importante può arrivare dallo studio degli asteroidi e delle comete, poiché si pensa che le loro caratteristiche non siano mutate radicalmente dal tempo della loro formazione. Questi, quindi, possono darci informazioni sull’età delle più antiche rocce del Sistema Solare e sulla composizione chimica del materiale con cui si sono formati i pianeti.
Un altro aiuto potrebbe arrivare dall’analisi dei crateri da impatto su corpi celesti senza atmosfera, come Luna e Mercurio. Il numero degli impatti e una stima dell’età dei terreni che hanno subito il bombardamento consentono di caratterizzare l’ambiente interplanetario nel corso della storia.
Molti degli impatti lunari sono avvenuti tra i 3,5 e i 4 miliardi di anni fa. Porzioni di superficie più recenti, come i mari, hanno una concentrazione nettamente minore di crateri.
La conclusione più logica è pensare che in quelle remote ere il Sistema Solare fosse un posto molto più affollato, popolato da miliardi di asteroidi e addirittura molti piccoli pianeti.

Dischi di detriti attorno a stelle in formazione
Degli importanti indizi per cercare di far luce sulla storia del Sistema Solare arrivano anche dall’esterno.
L’osservazione di numerose stelle, nebulose e sistemi planetari di diverse età, quindi a diversi stadi evolutivi, fornisce un’istantanea abbastanza precisa delle tappe che presumibilmente ha percorso il Sistema Solare dal momento della sua formazione. Non ci sono in effetti motivi per considerare lo sviluppo del Sistema Solare in qualche modo diverso e privilegiato rispetto a quanto accade alle altre stelle dell’Universo. A conferma di ciò, sembra che la formazione di dischi di detriti, quindi sistemi planetari, possa essere un fenomeno comune quanto quello che porta alla nascita delle stelle, probabilmente addirittura inevitabile per tutti gli astri, tranne forse le grandi stelle blu, la cui vita potrebbe essere più breve del tempo richiesto ai pianeti per formarsi.



La teoria attualmente più accreditata per la formazione dei sistemi planetari, compreso il Sistema Solare, è quella della “nebulosa primordiale". Un'immensa nube di gas e polvere in rotazione dalla quale si sarebbero formati il Sole e i pianeti, insieme ad altre decine o centinaia di stelle. È curioso come questa teoria sia stata ipotizzata ben prima delle evidenze scientifiche da alcuni illustri filosofi del passato, tra i quali il grande Immanuel Kant.

Lo scenario della formazione del Sistema Solare potrebbe allora essere il seguente.
Una nube fredda molto estesa di gas interstellare composta di idrogeno, elio, e una piccola parte di elementi pesanti aggregati in forma di polveri (meno del 2% in massa), vaga per la Galassia. Questo miscuglio di sostanze è probabilmente ciò che resta della morte di diverse stelle più antiche, raggruppato dai moti galattici e dalla forza di gravità.
A un certo punto la quantità di gas della nube interstellare è così elevata che la forza di gravità comincia a far sentire i suoi effetti, magari a causa di qualche perturbazione esterna, come l’esplosione di una supernova o la compressione dovuta all’ingresso di uno dei bracci a spirale della Via Lattea. Quando si rompe il delicato equilibrio che sostiene la nube contro la sua stessa forza di gravità, questa prende il sopravvento e inizia a comandare il gioco.
Gas e polveri cominciano a contrarsi sotto il loro stesso peso; la nebulosa si frammenta in regioni più piccole. In ognuna di queste regioni nascerà una stella e, se non ci saranno grossi problemi, anche un sistema planetario.

Concentriamoci quindi solo sulla porzione di nebulosa che produrrà il Sole e i pianeti, la nostra nebulosa primordiale.
Durante la fase di contrazione, che dura diversi milioni di anni, la nube comincia a ruotare sempre più velocemente a causa del principio di conservazione del momento angolare.
Cos’è il momento angolare e cosa implica la sua conservazione? Senza ricorrere a formule fisiche, facciamo un esperimento: proviamo a sederci su una sedia girevole, allarghiamo braccia e gambe e facciamoci mettere in rotazione da un amico. Quando stiamo per fermarci chiudiamo velocemente braccia e gambe, portandole più vicino possibile al corpo: la sedia a questo punto riprenderà a ruotare!
Questo effetto è un principio valido per ogni oggetto e in qualsiasi luogo dell’Universo.
Se la nube protosolare possiede una piccolissima rotazione, quando riduce il suo diametro di diverse decine di volte aumenta per forza la velocità di rotazione. La rotazione globale spiega perfettamente anche perché tutti i pianeti e una grandissima parte dei corpi celesti del Sistema Solare odierno ruotino attorno al Sole nello stesso senso.

A causa della forza centrifuga, la nube assume la forma di un disco, con un diametro della parte più densa di circa 10 miliardi di chilometri e uno spessore di 100 milioni di chilometri.
Nel centro, laddove nascerà il Sole, si accumula una grande quantità di gas.
La contrazione gravitazionale riscalda la zona centrale da una temperatura iniziale di circa -260°C fino a circa 2000°C: si e' formata una protostella, un embrione dalla forma sferica che si trasformerà presto in una stella a tutti gli effetti.
Alla fine del processo il Sole conterrà ben il 99,86% della massa dell’intero Sistema Solare.

Le briciole del gas e polveri rimaste in rotazione attorno alla protostella formano quello che si chiama disco di accrescimento. Le porzioni più vicine alle zone centrali lentamente vengono inglobate dalla protostella, in un processo che aumenta il calore interno a causa della compressione sempre maggiore.
Abbastanza lontano dal centro, il gas si raffredda a sufficienza, a tal punto che una parte si ricondensa in polveri e ghiaccio; le particelle ora sono molto più vicine tra di loro rispetto a quando si trovavano nella nebulosa primordiale, che era migliaia di volte più grande.
Le continue collisioni e la forza di gravità danno inizio a un lento processo di aggregazione fino a formare dei pezzi di roccia di cospicue dimensioni, detti planetesimi. A causa dell’estrema debolezza della forza di gravità, si pensa che le primissime fasi di formazione dei detriti a partire da granelli di polveri dalle dimensioni tipiche di qualche micron, siano in realtà dominate da un’altra forza. Proprio come le goccioline di pioggia di una nube, scontrandosi tra di loro si caricano di elettricità statica che scaricano poi a terra attraverso un fulmine, anche nella nebulosa primordiale il materiale nel disco di carica per sfregamento. La forza elettrostatica risultante è abbastanza forte, di certo ben più della gravità, per iniziare ad accumulare i granelli di polvere e formare dei piccoli nuclei che mano a mano inizieranno a sentire anche la reciproca forza di gravità.
Non si sa bene quando avvenga il passaggio di consegne tra forza elettrostatica e gravità, ma di certo, quando si arriva ad avere dei planetesimi, che si possono considerare dei piccoli asteroidi, la gravità ormai è l’unica forza a comandare il gioco, in un crescendo Rossiniano.
Fasi principali della formazione del Sistema Solare

Presenti probabilmente a migliaia di miliardi lungo il disco di accrescimento, i planetesimi, mano a mano che si scontrano e si fondono generano sempre maggiore forza di gravità, che aumenta il tasso e la violenza delle collisioni con altri planetesimi. Le elevatissime temperature indotte dalle collisioni sempre più violente fondono il planetesimo e lentamente gli conferiscono una forma sferica, cancellando completamente qualsiasi segno evolutivo precedente, compresi i materiali più volatili, che si aggregheranno solamente nelle più tranquille periferie o formeranno successivamente le atmosfere.

Dopo queste violente fasi, i planetesimi sono diventati dei protopianeti completamente fusi, con temperature di diverse migliaia di gradi.
I protopianeti sono gli embrioni dei pianeti attuali. Le loro dimensioni dipendono criticamente dalla distanza dal Sole e dalla densità del disco di polveri.
In questa fase si produce anche il fenomeno della differenziazione gravitazionale: i materiali più pesanti, come nichel e ferro, sprofondano verso il centro lasciando sulla superficie principalmente silicati e metalli leggeri.
Il calore lentamente si disperderà nello spazio raffreddando la superficie, ma non il nucleo, che potrà mantenersi a migliaia di gradi per diversi miliardi di anni, grazie anche al calore generato dal decadimento radioattivo di alcuni elementi, tra cui l’uranio, almeno per i corpi celesti massicci almeno quanto la Terra.

Nelle regioni interne, la grande quantità di radiazione emessa dalla protostella che si sta accendendo e l’intenso calore tendono a vaporizzare e disperdere verso l’esterno gas e polveri del disco. La maggiore concentrazione si raggiunge in una zona a circa 600-800 milioni di chilometri di distanza.
La differenza di dimensioni tra i pianeti rocciosi e quelli giganti prova la validità di questo scenario, con Giove, il più grande, aggregatosi proprio a circa 800 milioni di chilometri dal centro.
La formazione dei protopianeti può richiedere da circa centomila a venti milioni di anni.

A un certo punto, però, qualcosa interrompe bruscamente la fase di accrescimento.
Il calore nel nucleo della protostella sta superando la temperatura critica di 10 milioni di gradi.
Il Sole si accende finalmente di energia propria attraverso i processi di fusione termonucleare: la nostra stella è nata.
In conseguenza dell’accensione, il Sole primordiale emette un grande flusso di particelle cariche, un vento solare piuttosto violento in grado di spazzare via il gas residuo dalle regioni interne del Sistema Solare.
Da questo momento il destino dei pianeti è determinato dalla massa raggiunta fino a quel momento e dalla distanza dal neonato Sole.
Se il protopianeta è abbastanza massiccio da trattenere una parte del gas con la propria gravità, si formerà un pianeta gassoso, altrimenti parte o addirittura tutto l’inviluppo gassoso formatosi verrà spazzato via dal vento solare. Il risultato in questo caso sarà un pianeta roccioso.

Le osservazioni dei nuclei dei pianeti gassosi confermano questa ipotesi: le loro dimensioni sono simili a quelle dei pianeti interni, a conferma che sotto un certo punto di vista i pianeti rocciosi non sono altro che nuclei di pianeti gassosi privati dell’inviluppo atmosferico a causa del vento solare e delle alte temperature nelle regioni in cui si sono formati.
La pulizia operata dal vento solare di fatto blocca completamente il processo di formazione dei corpi celesti, dando inizio a una nuova e violenta fase.

L'evoluzione successiva è infatti una strenua lotta per la sopravvivenza.
Nel Sistema Solare non c’è posto per tutti: molti degli inquilini vengono distrutti da violenti impatti, confinati nelle periferie o addirittura espulsi a seguito di incontri ravvicinati.
Alcuni corpi riescono ad assestare dei colpi micidiali ai principali, modificandone caratteristiche e proprietà orbitali.
Presumibilmente questa sorte è toccata alla Terra, colpita da un planetesimo delle dimensioni di Marte circa 100 milioni di anni dopo la sua formazione, che ne ha rallentato il moto orbitale, inclinato l’asse di oltre 23° e scagliato nello spazio una quantità di materiale sufficiente per formare la Luna.
Per quanto possa sembrare distruttivo, un impatto del genere è probabilmente stato provvidenziale per lo sviluppo tranquillo della vita sul nostro pianeta e un’evoluzione garantita per miliardi di anni. La presenza della Luna, infatti, svolge un ruolo fondamentale nello stabilizzare l’inclinazione dell’asse terrestre. Senza la sua presenza l’asse avrebbe cambiato inclinazione nel tempo, portando a sconvolgimenti climatici che avrebbero rallentato o addirittura impedito l’evoluzione degli esseri viventi complessi.

Violentissimi impatti sembrano aver interessato anche altri pianeti, producendo risultati diversi, ma altrettanto evidenti. Una sorte simile potrebbe essere accaduta a Venere: un impatto probabilmente centrale ha invertito e reso lentissimo il periodo di rotazione, cancellando anche il campo magnetico.
Probabilmente neanche Urano si è salvato, nonostante si trovasse in una regione presumibilmente più tranquilla: un impatto ha fatto ruotare il pianeta e inclinato l’asse di rotazione di quasi 100°.
Questo duro combattimento consumatosi entro 200 milioni di anni dalla formazione ha modificato i corpi principali e distrutto i planetesimi più pericolosi. Si pensa infatti che il Sistema Solare primordiale fosse molto più affollato dei pianeti che possiamo vedere ora. Qualcuno ipotizza l’esistenza di una ventina di corpi di taglia planetaria. Molti si sono scontrati e distrutti, altri potrebbero essere stati scagliati nella periferia del Sistema Solare e altri ancora potrebbero essere stati espulsi dai complicati giochi di fionde gravitazionali e condannati a vagare in solitudine per la Galassia.

La prima battaglia termina quindi con l’eliminazione dei corpi celesti superflui, che non avrebbero potuto garantire la stabilità del Sistema Solare.
La seconda battaglia ha visto protagonisti i corpi minori che ancora popolavano le regioni del Sistema Solare in grandissimo numero. Nel successivo miliardo di anni scagliarono tutta la loro forza distruttiva contro i pianeti superstiti.
Alla fine della guerra, 3,5 miliardi di anni fa, dei miliardi di piccoli corpi celesti e planetesimi che popolavano le zone interne del Sistema Solare non vi era più traccia, mentre i corpi superstiti avrebbero portato, alcuni per sempre, le ferite di uno scontro terribile che non ha conosciuto pietà.
La lotta per la sopravvivenza non è solo una prerogativa degli animali che popolano la superficie della Terra, ma una legge naturale attraverso cui l’Universo effettua le proprie scelte evolutive.

giovedì 24 marzo 2016

Se le stelle utilizzano l’energia nucleare, perché non esplodono come delle enormi bombe?



Nell’Universo ci sono molti corpi celesti, addirittura particelle atomiche, che mostrano, persino senza rendersene conto, molta più responsabilità e amor proprio degli esseri umani.
Per quanto tu possa esplorare, viaggiare tra gli sterminati spazi, osservare e studiare attentamente tutti i costituenti della materia, dagli atomi ai gruppi di galassie, dalle stelle ai buchi neri, non troverai mai nulla che farebbe qualcosa per mettere a rischio la propria esistenza. Ma anche qui sulla Terra non troverai specie animale che userebbe le regole base dell’Universo per porre fine prematuramente alla propria vita. 
È una legge non scritta questa, ma molto potente: nell’Universo si cerca sempre di vivere nel modo più tranquillo e lungo possibile. A volte ci si riesce, altre no, ma nessuno si autodistruggerebbe volontariamente nel momento più stabile e florido della propria esistenza.
Nessuno, tranne l’essere umano, che sembra provare piacere nel cercare modi per mettere a repentaglio la propria presenza nel Cosmo.  
 Se nel corso della tua vita avrai bisogno di una guida, un modello da seguire, farai sicuramente molto prima ad alzare gli occhi al cielo, viaggiare per milioni di miliardi di chilometri sulle spalle di un raggio di luce, piuttosto che muoverti su questo minuscolo pianeta cercando di riporre le tue speranze su un essere umano.

Le stelle non hanno la minima intenzione di utilizzare la loro grande riserva di energia nucleare per farsi esplodere o per distruggere nemici inesistenti. Anche in questo caso, gli strabilianti e perfetti meccanismi della Natura non si smentiscono. Per capirlo dobbiamo iniziare dal principio, ma non ti preoccupare, non mi dilungherò troppo. 

Le reazioni principali di fusione negli interni stellari non avvengono tra due nuclei di idrogeno, ma tra un nucleo di idrogeno e uno di deuterio.
Il deuterio non è altri che un nucleo di idrogeno al quale è legato un neutrone. All’interno delle stelle, però, il deuterio non esiste in grandi quantità, perché non vi sono neutroni liberi con cui i protoni possono legarsi. Ti dirò di più: un neutrone libero ha una vita limitata ad appena 15 minuti, dopodiché si trasforma spontaneamente in altre particelle. Sono proprio queste due proprietà a regolare la velocità delle reazioni ed evitare alle stelle di esplodere. 

Il neutrone necessario per formare il deuterio deriva da una trasformazione molto rara, detta decadimento beta inverso.
In parole semplici, quando un protone, un elettrone, una particella chiamata antineutrino e un po’ di energia si incontrano, possono dare vita a un neutrone, che dovrà essere catturato da un altro protone entro 15 minuti per formare il deuterio necessario per la fusione. Perché questo piccolo intervallo di tempo? perché i neutroni liberi non vivono più di 15 minuti.
La reazione che porta alla nascita di un neutrone libero però, è estremamente rara e lenta. La probabilità che avvenga in un qualsiasi istante di tempo è pari a circa una su 10 milioni! È questa rarissima trasformazione che limita la produzione del deuterio e controlla quindi le reazioni di fusione, che procedono esattamente al ritmo necessario alla stella per mantenere integra la struttura. Se procedessero più lentamente collasserebbe sotto la sua stessa forza di gravità; se andassero più velocemente esploderebbe.
L'equilibrio che si raggiunge è stabile; se potessimo perturbare il sistema, questo ritornerebbe allo stato di equilibrio. Non si tratta quindi di un caso rarissimo, come una penna che si tiene in piedi sulla punta, ma di una situazione che somiglia di più a una biglia in una ciotola: per quanto possiamo spostarla questa tenderà sempre a tornare nel fondo, a meno che non ci mettiamo d'impegno nel far  uscire la biglia dalla ciotola.
In ogni caso, perché le stelle si comportano tutte in quesot modo? Perché esiste questo equilibrio che regola il numero di reazioni nucleari? Coincidenza o mano di una mente superiore? I credenti vedranno la mano di Dio; i non credenti solamente l’unica combinazione, tra le infinite provate dalla Natura, che ha potuto far sviluppare l’Universo e degli esseri senzienti che ora sono qui a porsi queste domande.
Pensiamo un attimo prima di scegliere una risposta: se l’Universo si fosse comportato diversamente, se le stelle non avessero brillato, tu ci saresti stato qui, ora, a osservarle? Probabilmente no. Ma chi ti dice che questa combinazione non sia stata provata? Potrebbe essere già accaduta, magari prima di questo Universo, ma se tu non c’eri non hai potuto vederla e nessuno te ne potrà mai parlare. 

Di certo, qualsiasi Universo che non funzionasse secondo questi perfetti meccanismi non ci avrebbe dato tempo necessario per nascere, quindi per ammirarlo. Noi esseri umani siamo l'ultimo gradino dell'evoluzione di un Cosmo che ha dovuto pazientare quasi 14 miliardi di anni prima di vederci nascere; siamo quindi la prova più concreta della stabilità e del perfetto incastro delle leggi fisiche che lo governano. Solo quando ogni tassello si è inserito nel posto giusto ci siamo potuti sviluppare noi, miliardi e miliardi di anni più tardi. 

Meglio tornare alle nostre stelle, prima di chiudere il post.
In effetti qualche stella nell’Universo esplode ogni tanto. Ma quando succede, con un evento chiamato supernova, il motivo è semplice: l’astro è giunto al capolinea della propria vita, in quel momento in cui niente può più evitare l’inevitabile e la fonte di energia al centro si è esaurita. La forza di gravità è molto, molto più paziente di un saggio eremita; prima o poi arriverà sempre il momento della sua vittoria.

lunedì 21 marzo 2016

Cosa si prova ad assistere al decollo di un razzo?

Me lo sono sempre chiesto, mentre sognavo di fronte alla tv che trasmetteva i lanci delle varia missioni spaziali, da quelle lunari agli Shuttle. Purtroppo non ho avuto la possibilità di assistere alla partenza del grande Saturn V verso la Luna perché sarei nato 11 anni dopo l'ultima missione lunare. Non ho visto partire neanche lo Space Shuttle perché nel 2011, anno dell'ultimo volo, ancora non avevo le risorse economiche per affrontare un viaggio intercontinentale.
Il mio desiderio, comunque, è diventato realtà lo scorso 21 Dicembre 2015. Mi trovavo in Florida per una vacanza e proprio in quei giorni avrebbe dovuto partire un razzo Falcon 9 della compagnia privata SpaceX. L'occasione diventò importantissima perché per la prima volta nella storia il primo stadio, invece di precipitare in mare ormai esausto, avrebbe tentato un atterraggio automatico e controllato su una rampa non troppo lontana da quella di partenza.
Tutto andò bene, come forse già sapete se seguite questo blog da almeno un paio di mesi.

Ora, a distanza di diverse settimane, ho trovato il tempo di montare il filmato della partenza e dell'atterraggio che ripresi con il cellulare, per cercare di rendere meglio l'idea di cosa voglia dire assistere al lancio notturno di un razzo diretto verso lo spazio.
Il filmato è stato fatto con il cellulare e un obiettivo grandangolare, quindi non ha una gran qualità ma rende l'idea di cosa significhi assistere al lancio notturno di un razzo. La scena era più brillante (e "vicina") a occhio nudo rispetto al video; la luminosità del razzo ben maggiore di quella della Luna piena, tanto che rischiarava tutto il panorama intorno. Se avete pazienza sentirete il suono arrivare... quasi un minuto e mezzo dopo la partenza! All'atterraggio, invece, si sente un doppio boom sonico dovuto al rientro del razzo a gran velocità negli strati alti dell'atmosfera, oltre alle scene di giubilo tipicamente americane della folta schiera di spettatori che si era radunata. Che emozione.

venerdì 18 marzo 2016

Quante sono state le missioni spaziali verso altri corpi celesti?


Dall’inizio dell’era spaziale, nel 1958, sono tante le sonde inviate verso altri corpi celesti, molte di più di quanto si possa immaginare.
Negli anni sessanta e settanta Stati Uniti e Unione Sovietica, in piena guerra fredda, non risparmiarono risorse per dimostrare al mondo la propria supremazia nello spazio.
Tutti abbbiamo avuto qualche compagno di scuola che doveva far vedere quanto era forte e spaccone, picchiando e mostrando di essere invincibile ai suoi compagni, vero? I grandi li chiamano bulli e cercano giustamente di impedirgli di fare del male agli altri; i ragazzini, invece, di solito subiscono.

Lo Sputnik 1, nel 1957, inaugurò la corsa allo spazio.
Quando i bulli diventano adulti, i grandi li chiamano in diversi altri modi: politici, industriali, magnati, speculatori, grandi finanzieri, banchieri... Cambiano  i modi con cui esercitano potere e terrore sulla gente, ma i risultati sono gli stessi. Inspiegabilmente, però, queste persone sono osannate e spesso prese come esempio dalle stesse che vanno nelle scuole cercando di separare i ragazzini che si azzuffano.
 
Come due perfetti bulli, che però disponevano di un potere illimitato ed enormi quantità di denaro, Stati Uniti e Unione Sovietica dovevano dimostrare al mondo chi fosse il più forte e chi avrebbe avuto il diritto di comandare su tutta la popolazione mondiale. Scelsero di farlo a suon di astronavi inviate in ogni punto del Sistema Solare; se non altro hanno contribuito, di certo involontariamente, a un enorme sviluppo tecnologico e scientifico. Ma questa sembra essere una regola: se uno stato sembra far del bene all’intera popolazione è perché non poteva fare altrimenti per raggiungere i suoi, personali e per nulla altruistici, obiettivi. La beneficienza è qualcosa che molti pubblicamente osannano ma che tutti, almeno oltre un certo livello, disprezzano. 

Per circa 30 anni la gara tra Unione Sovietica e Stati Uniti è andata avanti senza esclusione di colpi e senza l’intervento di nessun’altro stato poi, lentamente, anche altre potenze economiche hanno timidamente iniziato ad affacciarsi allo spazio.
Il programma spaziale con equipaggio umano è stato il meno sviluppato.
Sei missioni Apollo hanno portato astronauti sulla superficie lunare; altre tre quelle che hanno raggiunto la Luna, la distanza maggiore compiuta fino ad ora dagli esseri umani.
I voli con equipaggio umano nella bassa orbita terrestre sono invece molti di più: solamente gli Shuttle hanno effettuato 135 lanci, di cui 134 hanno raggiunto lo spazio.

Le missioni dedicate all’esplorazione automatica dei pianeti sono state circa 190. Contando i satelliti dedicati allo studio del Sole, delle comete e degli asteroidi, potremmo superare la straordinaria cifra di 200!
Quasi la metà riguarda l’esplorazione della Luna, con ben 88 missioni attualmente all’attivo, in gran parte concentrate negli anni 60 e 70 durante l’apice della gara allo spazio tra Stati Uniti e Unione Sovietica. 

La percentuale di successi, tuttavia, non è per niente elevata. Una rapida stima ci suggerisce che poco più del 50% delle missioni ha raggiunto gli obiettivi.
Le percentuali di fallimento erano elevatissime nei primi anni di esplorazione, a causa delle scarse conoscenze di una scienza ancora tutta da scoprire, ma anche soprattutto per la fretta imposta dai ritmi serrati della guerra fredda tra Sovietici e Americani. Non c’era tempo per accumulare conoscenze attraverso un percorso lento e prudente, bisognava produrre risultati. Poco importava se l’obiettivo veniva raggiunto dopo decine di fallimenti: era sufficiente per dimostrare la propria superiorità tecnologica al mondo e all’avversario.

La fretta non è mai una buona consigliera; ti rende nervoso, vulnerabile, ti fa dimenticare quello che sai e quello che sei, e spesso ti fa commettere azioni stupide che non avresti mai fatto se fossi stato più lucido. Ma a quanto pare il mondo, anche quello della ricerca e della conoscenza, sembra andare in questo insensato verso: meglio produrre qualcosa di pessimo che impiegare anni per arrivare a un risultato sensato e di qualità. Ecco perché il mondo è destinato a un'inesorabile involuzione.